Mammalian retinal bipolar cells express inwardly rectifying K+ currents (IKir) with a different distribution than that of Ih.
نویسندگان
چکیده
Retinal bipolar cells comprise multiple subtypes that are well known for the diversity of their physiological properties. We investigated the properties and functional roles of the hyperpolarization-activated currents in mammalian retinal bipolar cells using whole cell patch-clamp recording techniques. We report that bipolar cells express inwardly rectifying K+ currents (IKir) in addition to the hyperpolarization-activated cationic currents (Ih) previously reported. Furthermore, these two currents are differentially expressed among different subtypes of bipolar cells. One group of cone bipolar cells in particular displayed mainly IKir. A second group of cone bipolar cells displayed both currents but with a much larger Ih. Rod bipolar cells, on the other hand, showed primarily Ih. Moreover, we showed that IKir and Ih differentially influence the voltage responses of bipolar cells: Ih facilitates and/or accelerates the membrane potential rebound, whereas IKir counteracts or prevents such rebound. The findings of the expression of IKir and the differential expression of Ih and IKir in bipolar cells may provide new insights into an understanding of the physiological properties of bipolar cells.
منابع مشابه
Regulation of inwardly rectifying K+ channels in retinal pigment epithelial cells by intracellular pH.
Inwardly rectifying K+ (Kir) channels in the apical membrane of the retinal pigment epithelium (RPE) play a key role in the transport of K+ into and out of the subretinal space (SRS), a small extracellular compartment surrounding photoreceptor outer segments. Recent molecular and functional evidence indicates that these channels comprise Kir7.1 channel subunits. The purpose of this study was to...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملCeramide inhibits inwardly rectifying K+ currents via a Ras- and Raf-1-dependent pathway in cultured oligodendrocytes.
Ceramide is a lipid mediator implicated in apoptosis induced by proinflammatory cytokines in many cell types, including oligodendrocytes (OLGs). To determine whether ceramide modulates transmembrane signaling events in OLGs, we studied its effect on intracellular Ca2+ (Cai), resting membrane potential and inwardly rectifying K+ currents (IKir) in cultured neonatal rat OLGs. We report here that ...
متن کاملCorrigendum: Ih Equalizes Membrane Input Resistance in a Heterogeneous Population of Fusiform Neurons in the Dorsal Cochlear Nucleus
In a neuronal population, several combinations of its ionic conductances are used to attain a specific firing phenotype. Some neurons present heterogeneity in their firing, generally produced by expression of a specific conductance, but how additional conductances vary along in order to homeostatically regulate membrane excitability is less known. Dorsal cochlear nucleus principal neurons, fusi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 90 5 شماره
صفحات -
تاریخ انتشار 2003